
Entanglement measure for general pure multipartite quantum states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 9251

(http://iopscience.iop.org/0305-4470/37/39/012)

Download details:

IP Address: 171.66.16.64

The article was downloaded on 02/06/2010 at 19:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 9251–9260 PII: S0305-4470(04)78032-4

Entanglement measure for general pure multipartite
quantum states

Hoshang Heydari and Gunnar Björk

Department of Microelectronics and Information Technology, Royal Institute of Technology
(KTH), Electrum 229, SE-164 40 Kista, Sweden

E-mail: hoshang@imit.kth.se

Received 18 March 2004, in final form 28 June 2004
Published 15 September 2004
Online at stacks.iop.org/JPhysA/37/9251
doi:10.1088/0305-4470/37/39/012

Abstract
We propose an explicit formula for a measure of entanglement of pure
multipartite quantum states. We discuss the mathematical structure of the
measure and give a brief explanation of its physical motivation. We apply the
measure on some pure, tripartite, qubit states and demonstrate that, in general,
the entanglement can depend on what actions are performed on the various
subsystems, and specifically if the parties in possession of the subsystems
cooperate or not. We also give some simple but illustrative examples of the
entanglement of four-qubit and m-qubit states.

PACS numbers: 03.67.Mn, 42.50.Dv, 42.50.Hz, 42.65.Ky

1. Introduction

One of the unsolved problems of modern quantum theory is the quantification of multipartite-
state entanglement [1, 2]. This is a task that is directly linked to mathematics, such as linear
algebra, geometry and functional analysis. The definition of separability and of entanglement
of a multipartite state was introduced in [3], following the definition for bipartite states, given in
1989 by Werner [4]. Eventually, quantitative measures, such as the entanglement of formation
and concurrence were formulated for bipartite systems [5]. In recent years, there have been
attempts to find entanglement measures for qubit–qudit states [6–9] and for multipartite states,
i.e., in [10–15]. To exemplify: upper and lower bounds for the quantum relative-entropy of
entanglement of a multipartite system, in terms of the bipartite entanglements of formation,
distillation and quantum entropy of various subsystems, are derived in [10]. Measures based
on the Schmidt rank are proposed in [13], and on local unitary and filtering processes in [14].
Generalized concurrence for pure, multipartite states in arbitrary dimensions has been derived
in [7], based on invariants under local unitary transformation. Another generalization of the
concurrence for arbitrary, pure, multipartite states is based on the representation of generators

0305-4470/04/399251+10$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9251

http://stacks.iop.org/ja/37/9251


9252 H Heydari and G Björk

of the corresponding special orthogonal groups [16]. This measure is defined as the norm of
certain concurrence vectors. Unfortunately, the measure cannot be used to completely quantify
a general, pure, multipartite state. A rather different entanglement measure for general, pure,
multipartite states, based on a generalized Schmidt-decomposition, has been proposed in [17].
Furthermore, in [18], a very useful tool to detect entanglement, called entanglement witness,
is generalized to multipartite states. The tool is a consequence of the Hahn–Banach theorem
which states that for any convex, compact, vector set S, if ρ /∈ S, there exists a hyperplane
that separates ρ from S. However, to find such an operator, even in the case of a tripartite
state, is a formidable task. Nonetheless, quite impressively, Acı́n et al managed to construct a
witness operator for a class of mixed tripartite states [19].

In this paper, we propose another measure of entanglement for arbitrary, pure, multipartite
states, inspired by the work on the role of the relative phase between subsystems in
describing entanglement discussed in [20]. Our method is based on the joint relative-
phase properties of a multipartite quantum system Q = Q1Q2 · · ·Qm in a Hilbert space
HQ = HQ1 ⊗ HQ2 ⊗ · · · ⊗ HQm

expressed by a positive operator value measure (POVM) �Q
on HQ. The POVM is constructed by taking the m-fold tensor product of the subsystems’
corresponding POVMs. We have already derived and discussed, in detail, our measure
of entanglement for bipartite states in [21, 22], so here we will only discuss examples of
multipartite entangled states.

2. Entanglement from a relative-phase POVM

A general and symmetric POVM in a single Nu-dimensional Hilbert space HQu
is given by

�̂Qu
=

Nu∑
lu=1

Nu∑
ku=1

eiϕku,lu |ku〉〈lu|, (1)

where |ku〉 (and |lu〉) are the basis vectors in HQu
and

ϕku,lu = −ϕlu,ku
(1 − δkulu ). (2)

The POVM is a function of the Nu(Nu − 1)/2 relative phases
(
ϕ1u,2u

, . . . , ϕ1u,Nu
,

ϕ2u,3u
, . . . , ϕNu−1,Nu

)
.

It is now possible to form a POVM of a multipartite system by simply forming the tensor
product

�̂Q
(
ϕQ1;k1,l1 , . . . , ϕQm;km,lm

) = �̂Q1

(
ϕQ1;k1,l1

) ⊗ · · · ⊗ �̂Qm

(
ϕQm;km,lm

)
, (3)

where, e.g., ϕQ1;k1,l1 is the set of POVM relative phases associated with subsystems Q1,
for all k1, l1 = 1, 2, . . . , N1, where we need to only consider when l1 > k1 due to (2).
We can now recast this POVM, expressed in local properties, in terms of the relative-
phase sums and differences φk1,l1,...,km,lm = ∑m

u=1 ϕku,lu . Note that if, e.g., lv = kv ,
then the term ϕkv,kv

vanishes from the sum due to (2). From �̂Q we can express the
probability P that a measurement process results in the particular combination of joint relative
phases φ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

, . . . , φ
k

(M)
1 ,l

(M)
1 ,...,k

(M)
m ,l

(M)
m

as

P
(
φ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

, . . . , φ
k

(M)
1 ,l

(M)
1 ,...,k

(M)
m ,l

(M)
m

)
= Tr

(
ρ̂�̂

(
φ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

, . . . , φ
k

(M)
1 ,l

(M)
1 ,...,k

(M)
m ,l

(M)
m

))
, (4)

where ρ̂ is the state density operator acting on the composite Hilbert space HQ, and the
argument of P contains �m

u=1Nu(Nu − 1)/2 = M linearly independent relative-phase sums.
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Next, we define an (unnormalized) marginal probability of obtaining the particular relative-
phase outcome φ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

:

γ
k

(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

=
∣∣∣∣
∫

2π

dφ
k

(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

e
−iφ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

×P
(
φ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

, . . . , φ
k

(M)
1 ,l

(M)
1 ,...,k

(M)
m ,l

(M)
m

)∣∣∣∣ , (5)

where P must be expressed in the relative-phase sum and difference parameter φ
k

(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

,
but the particular choice of the remaining M − 1 linearly independent relative-phase sum and
difference parameters is inconsequential for the absolute value of the integral. The latter fact is
physically motivated by the fact that γ

k
(1)
1 ,l

(1)
1 ,...,k

(1)
m ,l

(1)
m

is an (unnormalized) statistical marginal
probability. The marginal probabilities γku,lu,...,kv,lv (where, here, and in the following, we will
omit the superscript on the indices) are proportional to the Fourier components of the joint
relative-phase distribution. Now, let us introduce the following index operator to connect the
notation using the subsystem indices, and the notation using a joint-system index running from
1 to N1N2 · · · Nm:

�(k1, l1, k2, l2, . . . , km, lm) = (k1 − 1)N2 · · ·Nm + (k2 − 1)N3 · · · Nm

+ · · · + (km−1 − 1)Nm + km,

(l1 − 1)N2 · · · Nm + (l2 − 1)N3 · · ·Nm + · · · + (lm−1 − 1)Nm + lm.

(6)

Note that the index operator generates two indices based on the sets {ku} and {lu}, respectively.
Evaluating the Fourier components, one finds, not surprisingly, that γk1,l1,...,km,lm =
2π |ρ�(k1,l1,...,km,lm)|. That is, to each relative-phase sum and difference there is an associated
joint-system density matrix coefficient, where the relative-phase sums contribute by a positive
term and the relative-phase differences with a negative term. We now define an index
permutation operator Pj operating on any function f (k1, l1, . . . , km, lm) by

Pj f (k1, l1, . . . , kj , lj , . . . , km, lm) = f (k1, l1, . . . , kj , lj , . . . , km, lm)

− f (k1, l1, . . . , lj , kj , . . . , km, lm). (7)

Using this operator, we can generalize our earlier results for bipartite systems [21, 22]. We
form an entanglement function by summing the absolute difference between pairwise relative-
phase sums and differences. The motivation for doing so can be explained by the following
(not quite complete) analogy. Suppose we have the EPR-state (|0, 0〉 + |1, 1〉)/√2 and that
we make measurements on each subsystem yielding the number zero for state |0〉 and unity
for the state |1〉. If we then form the number sum and the number difference between the
two subsystems, we find that the measured number sum is uncorrelated, randomly alternating
between 0 + 0 = 0 and 1 + 1 = 2. The number difference, in contrast, is correlated,
always equalling zero. The situation is the reverse for the state (|0, 1〉 + |1, 0〉)/√2. By
subtracting the (absolute values of the) properly normalized number-difference and number-
sum correlations and taking the absolute value of the result, we get a positive number for either
state. However, for an equal and real superposition of the states, that is, the separable state
(|0〉 + |1〉)⊗ (|0〉 + |1〉)/2, the correlation difference cancels (or in other words, there is neither
a number-sum nor a number-difference correlation), indicating that the state is separable. For
multipartite states this procedure must be recursively invoked. However, the procedure just
outlined is incomplete as it has a ‘preferred basis’ (it does not distinguish between, e.g., the
states (|0, 0〉 + |1, 1〉)/√2 and (|0, 0〉 − |1, 1〉)/√2). By using the relative phase, which is an
operator with a discrete spectrum but with a free, continuous parameter, this potential pitfall
with the correlation method is solved.
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We also introduce reduced density operators. Reducing over the jth subsystem we get the
following reduced density operators:

〈kj |ρ̂|kj 〉 = pj ;kj
ρ̂(j ;kj ), (8)

where the index kj can run from 1 to Nj, |kj 〉 is the kj th basis vector in subspace HQj
, ρ̂(j ;kj )

is a normalized (unit trace) density operator on the space Q1Q2 · · ·Qj−1Qj+1 · · ·Qm and pj ;kj

is a probability weight. (It is the probability of projecting the state onto the vector |kj 〉
when making a measurement using the computational basis in Qj .) Reducing more than one
subsystem, e.g., subsystems 1, 2 and j , we get

〈k1, k2, kj |ρ̂|k1, k2, kj 〉 = p1;k1,2;k2,j ;kj
ρ̂(1;k1,2;k2,j ;kj ), (9)

where, again, we have

Tr(ρ̂(1;k1,2;k2,j ;kj )) = 1. (10)

Following the definitions and the ‘recipe’ above, our entanglement measure for a
multipartite pure state is given by

	(ρ̂) =

N2

N1∑
l1>k1

N1∑
k1=1

N2∑
l2>k2

N2∑
k2=1

N3∑
k3=1

· · ·
Nm∑

km=1

p3;k3,...,m;km
|P2|ρ(3;k3,...,m;km)

�(k1,l1,k2,l2)

∥∥2
+ · · · + N2

Nm−1∑
lm−1>km−1

×
Nm−1∑

km−1=1

Nm∑
lm>kmN2

Nm∑
km=1

N1∑
k1=1

· · ·
Nm−2∑

km−2=1

p1;k1,...,m−2;km−2 |Pm|ρ(1;k1,...,m−2;km−2)

�(km−1,lm−1,km,lm)

∥∥2

+ N3

N1∑
l1>k1

N1∑
k1=1

N2∑
l2>k2

N2∑
k2=1

N3∑
l3>k3

N3∑
k3=1

N4∑
k4=1

· · ·
Nm∑

km=1

p4;k4,...,m;km

× |P2|P3

∣∣ρ(4;k4,...,m;km)

�(k1,l1,k2,l2,k3,l3)

∥∥2∣∣ + · · · + N3

Nm−2∑
lm−2>km−2

Nm−2∑
km−2=1

· · ·
Nm∑

lm>km

Nm∑
km=1

×
N1∑

k1=1

· · ·
Nm−3∑

km−3=1

p1;k1,...,m−3;km−3 |Pm−1|Pm

∣∣ρ(1;k1,...,m−3;km−3)

�(km−2,ll−2,km−1,lm−1,km,lm)

∥∥2∣∣

+ · · · + Nm−1

N1∑
l1>k1

N1∑
k1=1

· · ·
Nm−1∑

lm−1>km−1

Nm−1∑
km−1=1

Nm∑
km=1

pm;km

× |P2|P3| · · · |Pm−1|ρ(m;km)

�(k1,l1,k2,l2,...,km−2,lm−2,km−1,lm−1)
‖2 · · · ‖|

+ · · · + Nm−1

N2∑
l2>k2

N2∑
k2=1

· · ·
Nm∑

lm>km

Nm∑
km=1

N1∑
k1=1

p1;k1

× |P3|P4| · · · |Pm|ρ(1;k1)

�(k2,l2,k3,l3,...,km−2,lm−2,km−1,lm−1,km,lm)‖2 · · · ‖| + Nm

N1∑
l1>k1

×
N1∑

k1=1

· · ·
Nm∑

lm>km

Nm∑
km=1

|P2|P3| · · · |Pm|ρ�(k1,l1,k2,l2,...,km−1,lm−1,km,lm)‖2 · · · ‖|



1
2

.

(11)

This is our central equation. It looks messy, but has a rather logical inner structure.
The factors Nu are normalization factors, and they should not be confused with the space
dimensions Nu. The first sums, where two of them are written explicitly (with normalization
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factorsN2) on the right-hand side of (11), only contribute to the respective subsystem’s bipartite
entanglement. There are

(
m

2

) = m(m − 1)/2 ways to select two systems out of m without
respect to ordering. The two terms explicitly written above sum the bipartite entanglement
contribution between systems Q1,Q2 and Qm−1,Qm, respectively. For the systems {Qu,Qv},
there are Nu(Nu−1)Nv(Nv −1)/4 ways to select each of the relative phases of systems Qu and
Qv . Because the other system’s coefficients can be chosen arbitrarily among the diagonals,
there are �m

j=1Nj/(NuNv) number of relative-phase sums and differences involving ku, lu, kv

and lv each involving a different reduced density operator and an associated probability. Our
permutation operator subtracts the relative-phase difference from the relative-phase sum, so
by including all bipartite combinations, the bipartite entanglement of the joint system is taken
care of. Next, we add the tripartite entanglement (contained in the sums with normalization
factors N3). There are

(
m

3

)
tripartite combinations, and for every choice {Qu,Qv,Qw}, where

u < v < w, there are Nu(Nu − 1)Nv(Nv − 1)Nw(Nw − 1)/8 combination of system
relative phases. For each combination, we can sum all three relative phases, sum the first
two and subtract the third, etc. To form differences of all combinations, we use both the
permutation operators Pv and Pw. Hence, we get 4 = 23−1 contributions within the outermost
absolute signs in the sums premultiplied by N3 in (11). For each choice, the other system’s
indices can be chosen in �m

j=1Nj/(NuNvNw) different ways and we get the same number
of reduced density operators and probabilities. For the four-partite contribution we proceed
in the same way. For every choice {Qu,Qv,Qw,Qz}, where u < v < w < z, we use the
permutation operators Pv, Pw and Pz. We get 8 = 24−1 contributions inside the corresponding
outermost absolute signs, each contribution operating on �m

j=1Nj/(NuNvNwNz) different
reduced density operators. The sum proceeds in this fashion until the m-partite entanglement
contributions are to be added. There is only one way

((
m

m

) = 1
)

to chose all subsystems, so
in this case we do not reduce the density operator but use m as the index in our permutation
operator. We use the permutation operators P2, P3, . . . , Pm. (We do not permute k1 and l1.) In
all, we get 2m−1 terms inside the outermost absolute signs of the last sum in (11). These terms
represent all the possible relative-phase sums and differences between all the m-systems, so
there are no further terms.

From our definitions, it is clear that for any product state

ρ�(k1,l1,k2,l2,...,km,lm) = ρk1,l1ρk2,l2 · · · ρkm,lm , (12)

where ρku,lu is the indicated density matrix coefficient of system u. In this case, one gets
Pu|ρ�(k1,l1,...,km,lm)| = 0 for any u and any set of indices k1, l1, . . . , km, lm. Hence, our
entanglement function 	(ρ̂) = 0 for any tensor product of m density operators. For entangled
states, the function 	 is not invariant to local unitary transformations as will be shown explicitly
below (equations (17) and (20)). Therefore, in analogy with our definitions for bipartite states,
we define our measure of entanglement 	sup, where sup refers to the supremum of 	 under
all possible local unitary transformations.

Note that our measure sums all the state’s entanglement, all the bipartite terms, all the
tripartite terms. . . . For bipartite states, there is only one kind of entanglement so in this
particular case there is no summation to be done. For multipartite states (say, an m-partite
state) there are already different possibilities to share bipartite entanglement between the
subsystems, one for each choice of two subsystems out of the m. In general there are also
different ways to share tripartite entanglement, etc. The only unique entanglement is the
m-partite entanglement. Therefore, one should note that although, e.g., a state’s bipartite
entanglement between subsystems Q1 and Q2 cannot be used simultaneously either with its
bipartite entanglement between subsystems Q1 and Q3, or, e.g., with its tripartite entanglement
between subsystems Q1,Q2 and Q3, all contributions are added in our measure. That is, our
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measure characterizes the entanglement contained in a state, but in general the measure
exceeds the ‘usable’ entanglement. However, by looking at the various terms in the sum,
the usable entanglement can be extracted from the measure as it is composed of sub-sums
containing the bipartite Q1 and Q2 entanglements, the bipartite Q1 and Q3 entanglements, the
tripartite Q1,Q2 and Q3 entanglements, etc, as can be explicitly seen in (14). Actually, our
measure suggests that it may be difficult to define the usable entanglement in a unique way,
as, e.g., tripartite entanglement can be converted to bipartite entanglement and vice versa by
local operations and classical communication. Unless the bipartite-to-tripartite entanglement
conversion efficiency is independent of the state, it is not possible to relate the ‘values’ of the
bipartite and tripartite entanglements to each other. This is in contrast to, e.g., entanglement
of formation, that is defined as the minimum number of EPR-pairs needed to form a state and
therefore gives a well-defined number.

Also note that our measure sums the possible cooperative entanglement. That is, it is
assumed that the entanglement contained in the state is used in an optimal way. In contrast, if
some subsystems are ignored, or the information contained in a subsystem is lost, the ensuing
state’s entanglement is in general lower than what our measure predicts. We shall come back
to this point when we discuss tripartite states below.

Let us now write and use (11) in a few explicit cases. The degree of entanglement for a
HQ1 ⊗ HQ2 bipartite state is given by truncating (11) to

	(ρ̂) =
(
N2

N1∑
l1>k1

N1∑
k1=1

N2∑
l2>k2

N2∑
k2=1

∥∥ρ(k1−1)N2+k2,(l1−1)N2+l2

∣∣ − ∣∣ρ(k1−1)N2+l2,(l1−1)N2+k2

∥∥2
Q1Q2

) 1
2

.

(13)

This special case has already been discussed in detail in [21, 22], and we have shown that
the equation coincides with the concurrence [5] for pure bipartite states in space dimension
2 ⊗ 2 (provided that one sets N2 = 4) and with generalized concurrence measures in 2 ⊗ 3
dimensions [6–8].

3. Tripartite entanglement

The degree of entanglement for a HQ1 ⊗ HQ2 ⊗ HQ3 tripartite state is given by inserting the
proper summation limits in (11):

	(ρ̂) =

N2


 N1∑

l1>k1

N1∑
k1=1

N2∑
l2>k2

N2∑
k2=1

N3∑
k3=1

p3;k3

∥∥ρ
(3;k3)

�(k1,l1,k2,l2)

∣∣ − ∣∣ρ(3;k3)

�(k1,l1,l2,k2)

∥∥2
Q1Q2

+
N1∑

l1>k1

N1∑
k1=1

N3∑
l3>k3

N3∑
k3=1

N2∑
k2=1

p2;k2

∥∥ρ
(2;k2)

�(k1,l1,k3,l3)

∣∣ − ∣∣ρ(2;k2)

�(k1,l1,l3,k3)

∥∥2
Q1Q3

+
N2∑

l2>k2

N2∑
k2=1

N3∑
l3>k3

N3∑
k3=1

N1∑
k1=1

p1;k1

∥∥ρ
(1;k1)

�(k2,l2,k3,l3)

∣∣ − ∣∣ρ(1;k1)

�(k2,l2,l3,k3)

∥∥2
Q2Q3




+N3

N1∑
l1>k1

N1∑
k1=1

N2∑
l2>k2

N2∑
k2=1

N3∑
l3>k3

N3∑
k3=1

{∥∥∣∣ρ�(k1,l1,k2,l2,k3,l3)

∣∣−∣∣ρ�(k1,l1,k2,l2,l3,k3)

∥∥2
Q1Q2Q3

−∥∥ρ�(k1,l1,l2,k2,k3,l3)

∣∣ − ∣∣ρ�(k1,l1,l2,k2,l3,k3)

∥∥2
Q1Q2Q3

∣∣}



1
2

. (14)
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Let us now give two concrete examples of this measure for three-qubit states. In this
space, equation (11) is further reduced to

	(ρ̂) = (
N2

{
p3;1

∥∥ρ
(3;1)
1,4

∣∣ − ∣∣ρ(3;1)
2,3

∥∥2
Q1Q2

+ p3;2
∥∥ρ

(3;2)
1,4

∣∣ − ∣∣ρ(3;2)
2,3

∥∥2
Q1Q2

+ p2;1
∥∥ρ

(2;1)
1,4

∣∣ − ∣∣ρ(2;1)
2,3

∥∥2
Q2Q3

+ p2;2
∥∥ρ

(2;2)
1,4

∣∣ − ∣∣ρ(2;2)
2,3

∥∥2
Q2Q3

+ p1;1
∥∥ρ

(1;1)
1,4

∣∣ − ∣∣ρ(1;1)
2,3

∥∥2
Q1Q3

+ p1;2
∥∥ρ

(1;2)
1,4

∣∣ − ∣∣ρ(1;2)
2,3

∥∥2
Q1Q3

}
+N3‖|ρ1,8| − |ρ2,7‖2

Q1Q2Q3
− ‖ρ3,6| − |ρ4,5‖2|Q1Q2Q3

)1/2
. (15)

In the equation we have (somewhat superfluously) used the subscripts Q1Q2 etc to indicate
between which subspaces the entanglement is shared.

In the three-qubit space there exist two classes of states, inequivalent under local operations
and classical communication (LOCC), called |
W〉 and |
GHZ〉 states. They are, e.g.,
|
GHZ〉 = (|0, 0, 0〉+ |1, 1, 1〉)/√2 and |
W〉 = (|0, 0, 1〉+ |0, 1, 0〉+ |1, 0, 0〉)/√3. However,
let us first consider the state

|
W′ 〉 = 1√
6
(|0, 0, 0〉 + |0, 0, 1〉 + |0, 1, 0〉 − |1, 0, 0〉 + |1, 0, 1〉 + |1, 1, 0〉). (16)

Applying our measure directly to this state yields

	(ρ̂W′) = (
N2

{
p1;1

∣∣ρ(1;1)
2,3

∣∣2
Q2Q3

+ p1;2
∣∣ρ(1;2)

2,3

∣∣2
Q2Q3

})1/2 =
√
N2

9
, (17)

where we have only written the contributing terms. However, the state above is actually a
|
W〉-state in disguise. Applying a Hadamard transformation only to subsystem 1, that is,
transforming the state according to H ⊗ 1 ⊗ 1|
W′ 〉, where

H = 1√
2

(
1 1
1 −1

)
, (18)

we get the state |
W〉. One can show that the supremum of 	(ρ̂W′) is obtained by this particular
unitary transformation so applying (15) to the state H ⊗ 1 ⊗ 1|
W′ 〉 = |
W〉 we get

	sup(ρ̂W′) = 	(ρ̂W) = (
N2

{
p3;1

∣∣ρ(3;1)
2,3

∣∣2
Q1Q2

+ p1;1
∣∣ρ(1;1)

2,3

∣∣2
Q2Q3

+ p2;1
∣∣ρ(2;1)

2,3

∣∣2
Q1Q3

})1/2

=
(
N2

{
1

6
+

1

6
+

1

6

})1/2

=
√
N2

2
. (19)

This example shows that the bipartite entanglement of this state is equally shared between the
three subsystems. We also see that 	 is not invariant under local unitary operations, and in more
general terms, it is not invariant under local operations and classical communication. This
is why we need to find the supremum of 	 under such transformations. The entanglement
of the W-state is greater than that of a EPR-pair, that has 	sup(ρ̂EPR) = (N2/4)1/2. The
difference can readily be explained. If one of the qubit subsystems of the W-state is measured,
then the remaining state will be in the separable state |0, 0〉 with probability 1/3, and will be
in the EPR-state (|0, 1〉 + |1, 0〉)/√2 with probability 2/3. Since this is true irrespective of
which of the three subsystems is measured, the maximum of the state’s total entanglement
is (3 × 2/3 × N2/4)1/2 = (N2/2)1/2.

Let us now turn to the GHZ-state. From this example we shall see that finding the
supremum of 	 is associated with fundamental difficulties (and not only with computational
difficulties). Computing 	 for the |
GHZ〉-state we get

	(ρ̂GHZ) = (
N3|ρ1,8|2Q1Q2Q3

) 1
2 =

√
N3

4
. (20)
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Hence, the GHZ-state contains no bipartite entanglement per se. However, if we make the
following unitary transformation:

|
 ′
GHZ〉 = H ⊗ H ⊗ H |
GHZ〉

= 1
2 (|0, 0, 0〉 + |0, 1, 1〉 + |1, 0, 1〉 + |1, 1, 0〉), (21)

we get

	(ρ̂ ′
GHZ) =

√
3N2

4
. (22)

Transforming the |
GHZ〉-state in this manner transforms the tripartite entanglement to bipartite
entanglement. The fact that this is possible should not come as a surprise, given that the
|
GHZ〉-state can be formed making local operations on 2 EPR-pairs shared by three parties
[23]. Note that in order to use the potential bipartite entanglement, the parties holding the
three subsystems must cooperate. If any one of the subsystems is traced out, the ensuing
bipartite state is separable. In contrast, if the qubit value of one of the subsystems is measured
and communicated to one of the parties holding either of the other subsystems, the remaining
bipartite state will be in a known EPR-state. If such a measurement is done directly on the
untransformed GHZ-state, all entanglement is lost regardless of whether or not the outcome
is communicated to the other parties. It is easy to understand that by applying a proper, local
qubit transformation and subsequently measuring the qubit and communicating the result, it
is possible to continuously vary the ensuing bipartite entanglement from zero to that of an
EPR-state.

We also see that the bipartite entanglement of a GHZ-state actually is higher than that
of a W-state, provided that the parties cooperate. In the case of the GHZ-state, the parties
will always end up with a known EPR-state if one the subsystems is measured and the three
parties cooperate. In the case of the W-state, this only happens with a probability 2/3. In
addition, it becomes clear that before assigning relative values to N2 and N3, it is not possible
to establish the supremum of 	 for a GHZ-state because it depends on the ratio between N2

and N3. It is, however, possible to do what we have done, namely establish the supremum for
the bipartite entanglement and for the tripartite entanglement separately. Because the GHZ-
and the W-states belong to different equivalence classes, their relative bipartite and tripartite
entanglement weights are not obvious. This issue is related to the, still open, question about
minimal reversible entanglement generating sets [2, 12, 11, 19, 24].

4. Beyond three-partite qubit entanglement

Next, let us look at an interesting four-qubit state |
1〉 = (|0, 0, 0, 1〉+|0, 1, 0, 0〉+|1, 0, 1, 0〉+
|1, 1, 1, 1〉)/2. Applying our measure of entanglement directly to this state we get

	
(
ρ̂
1

) = (
N2

(
p1;1,3;1

∣∣ρ(1;1,3;1)

2,5

∣∣2
Q2Q3

+ p1;2,3;2
∣∣ρ(1;2,3;2)

11,16

∣∣2
Q2Q4

)
+N3

(
p4;2

∣∣ρ(4;2)
1,8

∣∣2
Q1Q2Q3

+ p4;1
∣∣ρ(4;1)

3,6

∣∣2
Q1Q2Q3

+ p2;1
∣∣ρ(2;1)

2,7

∣∣2
Q1Q3Q4

+ p2;2
∣∣ρ(2;2)

1,8

∣∣2
Q1Q3Q4

)) 1
2

=
(
N2

4
+
N3

2

) 1
2

. (23)

Again, establishing a supremum requires the ratio between the two normalization coefficients
to be fixed. The state has both bipartite and tripartite entanglements. In this case too, the
parties possessing the different qubit subsystems must cooperate in order to use the bipartite
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entanglement. If, e.g., qubits 1 and 3 are measured in the computational basis, the result is
either two zeros or two ones. If this result is communicated to the parties holding qubits 2
and 4 (that is, we perform a LOCC, optimal for bringing out the bipartite entanglement), the
remaining two-qubit state will be in (a known) pure EPR-state. If, on the other hand, we
measure only qubit 2 or qubit 4 and communicate the result, then the remaining state is in a
known GHZ-state.

The tripartite entanglement of the state |
2〉 = (|0, 1, 1, 0〉 + |1, 0, 0, 1〉 + |0, 1, 1, 1〉 +
|1, 0, 0, 0〉)/2, on the other hand, is given by

	sup
(
ρ̂
2

) =
√
N3

4
. (24)

That is, the state has no four-partite entanglement and as before, the tripartite entanglement
can be converted to bipartite entanglement. (The supremum in the equation refers only to the
tripartite entanglement.) To arrive at the result, we note that a unitary transformation Û4 local
to Q4 can transform the state into, e.g., Û4|
2〉 = (|0, 1, 1〉+ |1, 0, 0〉⊗|0〉)/√2 for which one
finds the supremum of the tripartite part of 	. In this case, the state’s tripartite entanglement
is the same whether or not the party in possession of qubit 4 cooperates or not.

As a last example, consider the m-qubit generalization of a GHZ-state, a so-called m-GHZ
state:

|
m-GHZ〉 = 1√
2
(|01, 02, . . . , 0m〉 + |11, 12, . . . , 1m〉) . (25)

Applying our measure of entanglement to this state and maximizing, we get

	sup(ρ̂m-GHZ) =
(
Nm

4

) 1
2

, (26)

where the supremum refers to the m-partite entanglement. In analogy with the tripartite GHZ-
state, it is possible to trade the m-partite entanglement to entanglement between fewer than m
subsystems, provided that the various parties holding the subsystems cooperate.

5. Conclusions

In conclusion, we have proposed an entanglement measure for pure, multipartite quantum
states. The measure directly detects product states (it is zero for such states), and it quantifies
the entanglement of any pure state up to the bipartite, tripartite, . . . , m-partite normalization
coefficients. Since it is not possible to convert the entanglement in states with incompatible
entanglement classes such as GHZ- and W-states into each other, it may not be meaningful
to specify the coefficients relative to each other. Rather, from an operational point of view,
it seems more meaningful to specify each shared entanglement separately, e.g., in a system
composed of four subsystems Q1,Q2,Q3 and Q4, it is meaningful to discuss, separately,
the bipartite entanglement between, e.g., systems Q1 and Q2, and Q1 and Q4. While it is
meaningful to relate the resources needed to form various kinds of entangled states in terms
of the minimum number of EPR-pairs needed, it is not yet clear if the utility of entanglement
in applications can be classified in a similar, unambiguous manner. That would require a
proof that various kinds of entanglement, e.g., bipartite and four-partite entanglements can
be converted into each other with a fixed ‘efficiency’ regardless of the state. Such a proof is
lacking at present, and to us it seems unlikely that this could be the case in view of how many
kinds, and how many combinations, of different entanglements a state can have simultaneously.
(It also seems likely that other states than EPR-pairs would be efficient, or needed, to convert
between different kinds of entanglements.) It seems more likely that entanglement will have
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to be classified in more than one way, depending on what kind of information one seeks and
what kind of application one has in mind. Each measure will then have its own meaning and
merit. Our measure sums all contributions to quantify the state’s entire entanglement, but, as
just indicated, from an operational viewpoint, it is rather the sum’s various contributions that
have a well-defined meaning.
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